(495) 240-82-80ПН-СБ с 10:00 до 18:00
We speak English

Технология TI-Nspire CAS. Решение систем уравнений и неравенств, в том числе с параметром. Люблинская И.Е.

Автор: Люблинская Ирина Ефимовна, кандидат наук, College of Staten Island, City University of New York

TI Nspire CAS - технология для изучения математики и основных научных дисциплин

Инновационная обучающая система TI-Nspire CAS от компании Texas Instruments, США, является единственным в мире технологическим продуктом, который включает в себя динамическую программу для изучения всех разделов школьной математики и лабораторию для работы с задачами по основным научным дисциплинам. Этот продукт объединяет в себе поддержку геометрии, анализа, алгебры, статистики и работу с физическими датчиками. При этом объединение приложений программы создано не по принципу коллекции (как у Автографа), а на основе общих форматов данных, допускающих обмен данным между приложениями.

Обучающую систему TI-Nspire CAS можно использовать на персональных компьютерах и учебных микрокомпьютерах в классах и дома. Микрокомпьютеры имеют небольшой цветной дисплей.

Помимо программного обеспечения для изучения предметов этот продукт включает в себя систему TI-Nspire Navigator для поддержки локальной беспроводной сети между компьютером учителя и микрокомпьютерами учеников. Это позволяет учителю видеть и оценивать работу каждого ученика в реальном времени, создавать, рассылать и собирать тесты и задания для учащихся, а также предоставлять им возможность демонстрировать свою работу всему классу со своего микрокомпьютера через компьютер учителя. С помощью программы также можно создавать динамические презентации и проигрывать их специальным бесплатным плейером.

               

Полный программный продукт TI Nspire CAS состоит из нескольких компонентов

Для учеников:

1. Программная среда "Математика и естественные науки". TI-Nspire CAS версия ученика этой среды включает:

  • Cистему компьютерной алгебры, динамическую геометрию, программу работы с графиками функций, электронными таблицами, программу поддержки статистики, интерактивный блокнот и физическую лабораторию (датчики продаются отдельно).
  • Cредства создания мультимедийных документов, например, тексты, гиперссылки, видео и изображения; средства создания портфолио.
  • Cреду программирования на языке Lua.

2. Цветной учебный микрокомпьютер TI-Nspire CAS CХ с набором функций.

Для учителей:

1. ПО "Математика и естественные науки" TI-Nspire CAS версия учителя, включающая всё, что включено в версию ученика, а также приложение по созданию контрольных и самостоятельных работ и тестовых вопросов в различных форматах.

2. Станции для зарядки и передачи данных.

3. ПО TI-Nspire Navigator CAS для учебных микрокомпьютеров (подсоединение через беспроводную связь), включающее:

  • ПО "Математика и естественные науки" TI-Nspire CAS, версия учителя.
  • Систему организации работы с классом - электронный журнал (портфолио), менеджер компьютеров (или учебных микрокомпьютеров) учеников для обмена документами, контроля работы учащихся во время урока, демонстрации их работ в реальном времени и т. д.

4. TI-Nspire Document Player - бесплатная ограниченная версия программы для "проигрывания" документов без лицензионной копии программы возможного только для документов, не требующих ввода данных в программу или построений.

TI Nspire CX CAS включает систему компьютерной алгебры, динамическую геометрию, программу работы с графиками функций, программу поддержки статистики и физическую лабораторию

В 2006 году впервые TI-Nspire CAS технологии были апробированы в Европе и Северной Америке. В 2007 TI-Nspire CAS технологии появились на рынке. С тех пор эти технологии нашли применение в школах стран Северной Америки (США, Канада и Мексика), Южной Америки (Колумбия и Чили), Австралии и Новой Зеландии, Азии (Китай и Индия), Европы (10 стран) и Африки (Марокко). Апробация этих технологий в России началась в августе 2011 года в четырёх школах Санкт-Петербурга: Лицее "Физико-техническая школа" Калининского района, Гимназии №177 Красногвардейского района, ГОУ СОШ №558 с углубленным изучением математики Выборгского района, Школе №597 - лицей компьютерных технологий Приморского района.

Учителя - участники пилотного проекта положительно отзываются о технологии, вполне способной заменить несколько отдельных пакетов. Школьники легко осваивают микрокомпьютеры и свободно используют их возможности. На основе опыта работы учителей-участников проекта появилась реальная возможность эффективного внедрения этих технологий для изучения математики и естественных наук в российских школах.

Решение систем уравнений и неравенств, в том числе с параметром

В качестве первого примера рассмотрим графическое исследование количества решений системы двух линейных уравнений. Сначала в программе строятся графики двух линейных функций

Затем ученикам предлагается использовать инструменты вращения и перемещения для манипуляций с графиком одной из прямых (в приведенном примере положение прямой 1 фиксируется, так что ученики могут менять график только прямой 2). На основе наблюдений ученики выдвигают гипотезу об условиях, при которых система двух линейных уравнений не имеет решений, имеет одно решение или имеет бесконечное множество решений.

При вращении по умолчанию центром поворота является точка пересечения прямой с осью ординат. Поэтому в уравнении прямой динамически меняется угловой коэффициент, а свободный член остается неизменным

Соответственно, при перемещении меняется свободный член, в то время как угловой коэффициент остаётся постоянным.

В процессе компьютерного эксперимента ученики определяют условия, при которых две прямые имеют только одну общую точку, не пересекаются или совпадают. Благодаря динамическому характеру приложения ученики могут рассмотреть различные ситуации и убедиться в том, что:

    • Для пересечения прямых в одной точке необходимо и достаточно того, чтобы угловые коэффициенты прямых были разными.
    • Если угловые коэффициенты прямых равны, то прямые параллельны или совпадают в зависимости от свободных членов уравнений.

В этом примере мы использовали инструменты движений для изменения графика одной из функций. В следующем примере мы рассмотрим систему уравнений с параметром, который мы зададим при помощи слайдера. Перед учениками ставится задача исследования количества решений системы уравнений в зависимости от значения параметра а. Затем ученики находят решения системы уравнений в каждом случае

При вращении в уравнении прямой динамически меняется угловой коэффициент

При использовании слайдера ученики исследуют взаимное расположение ломаной и окружности и убеждаются в том, что система может не иметь решений, если график ломаной не пересекает окружность.

   

Система может иметь только одно решение, когда одна из веток графика функции является касательной к окружности.

   

Система может иметь два решения, когда одна из веток графика функции пересекает окружность дважды, а другая ветка ее не пересекает, или каждая ветка графика пересекает ее только один раз.

   

Для аналитического решения ученики сначала должны найти значение параметра а, при котором ветви графика функции являются касательными к окружности. Поскольку при этом условии расстояние от центра окружности до точки касания равно радиусу окружности, достаточно решить уравнение. Это приводит к условиям a= или а = . После получения аналитического решения системы уравнений его можно проверить, используя приложение Калькулятор. В данном случае для получения общего решения мы использовали букву b (при использовании параметра а программа подставляет текущее численное значение для параметра и выдаёт только частное решение).

Можно также проверить условие существования решения.

При подстановке b= (или b = ) в полученные выражения для х и у можно также подтвердить, что в этом случае система имеет одно решение.

В заключении рассмотрим два примера заданий по типу С3 и С5 из ЕГЭ. Сначала рассмотрим решение системы неравенств . Построим графики функций f1(x) = и f2(x) =

Для определения промежутков, на которых обе функции одновременно не положительны, найдем нули функции. Из графика следует, что оба неравенства выполняются, когда

Другой способ графического решения данной системы неравенств основан на построении постоянной функции с областью определения, ограниченной условиями, наложенными неравенствами. Если значение функции равно нулю, то на графике будут выделены только значения х, удовлетворяющие условиям системы неравенств

Это решение можно проверить в приложении Калькулятор.

Нужно отметить, что программа выдает правильный ответ, и это может помочь ученику найти ошибки в своём решении, если ответ, полученный при решении задачи на бумаге, не совпадает с выводом программы.

В последнем примере мы рассмотрим задание по типу С5, в котором ученику требуется найти все значения а, при каждом из которых система не имеет решений.

В данном случае мы опять используем слайдер для определения а и воспользуемся графиком нулевой функции, определённой на интервале, заданном системой неравенств. Изменяя значение а, убеждаемся в том, что на интервале [-3, -1] решений нет.

    

    

Демонстрационную 90-дневную версию учителя предоставляем бесплатно по запросу на эл.почту.

Calculators-Online.ru